

(asbestos)

(tree)

Framework for Evaluating Asbestos Sites USEPA/OSWER Asbestos Technical Review Workgroup

Arnold Den

United States Environmental Protection Agency Region IX San Francisco, CA

Special Thanks to:

- Jim Konz (HQ) and Mark Maddaloni (R2)
- Chuck Nace (R2)
- Brian Brass (ERT)
- Julie Wroble (R10)
- Gerry Hiatt (R9)
- Danielle Devoney (NCEA)
- Greg Meeker, USGS
- Stiven Foster (OSWER)
- Nardina Turner (R4)
- Terry Smith (OSWER)
- Mary Goldade (R8)

Overview

- Activity-Based Sampling
 What is it?
 Why do it?
 Asbestos definitions
 Asbestos environmental sampling and analysis
 Asbestos Site Assessment Framework
- Asbestos Risk Assessment

Asbestos Exposure Assessment

- Measurements made directly from the breathing zone are most appropriate for incidental soil exposures
- Measurements from stationary monitors <u>may not</u> provide reliable estimates of human inhalation exposure
- Solid media (e.g., soil or dust) measurements <u>cannot</u> be reliably converted to derive airborne exposure concentrations

Why Activity-Based Sampling?

- OSWER Directive 9345.4 (Cook memo)
- Soil concentrations <1% demonstrated to represent significant risk</p>
- Correlation between potential release of asbestos from soil and inhalable fibers not well defined & methods not standardized
- Resuspension of PM from human activity produces a measurable personal cloud

(Lynn Hildemann, Stanford University March 2005)

 Empirical results indicate ABS is the appropriate methodology

Activity-Based Sampling (ABS)

Generic & Site-specific ABS

- Generic Outdoor ABS utilizes a rake to disturb the soil over a known area in conjunction with the collection of air samples.
 Evaluate the potential for fiber release from soil over a large area.
- Generic Indoor ABS utilizes fans to disturb settled dust in conjunction with the collection of air samples

Evaluate the potential for fiber release from dust

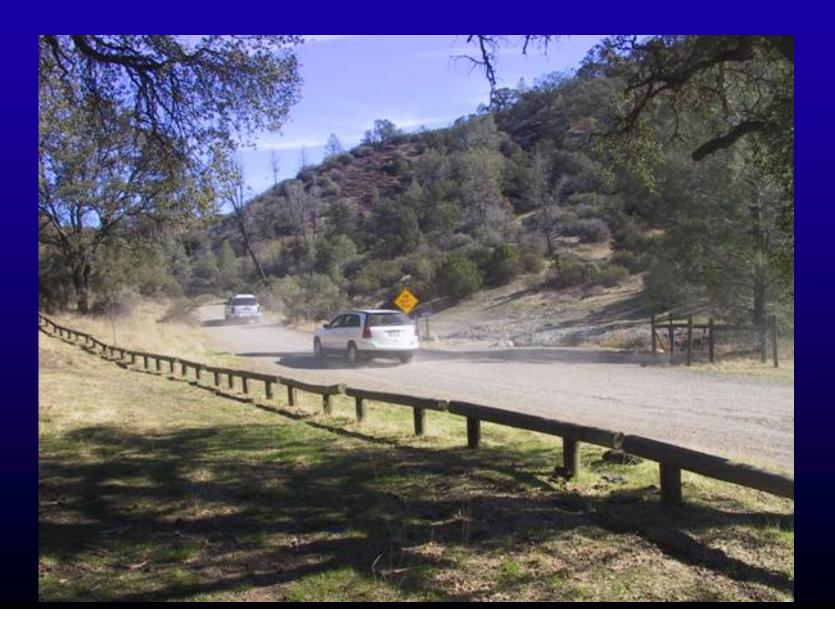
 Site-Specific Outdoor or Indoor ABS utilizes simulated activities to disturb source
 Based likely site activities to evaluate exposure

Activity-Based Outdoor Sampling

- Uses an activity that provides a high-end soil disturbance
- Currently recommend a "raking scenario"
- Rake for specified time over a template area
- Collect personal air samples (breathing zone) and perimeter air samples
- Provides a measure of fiber release from soil

ATV Riding

Bicycling


Walking with Stroller

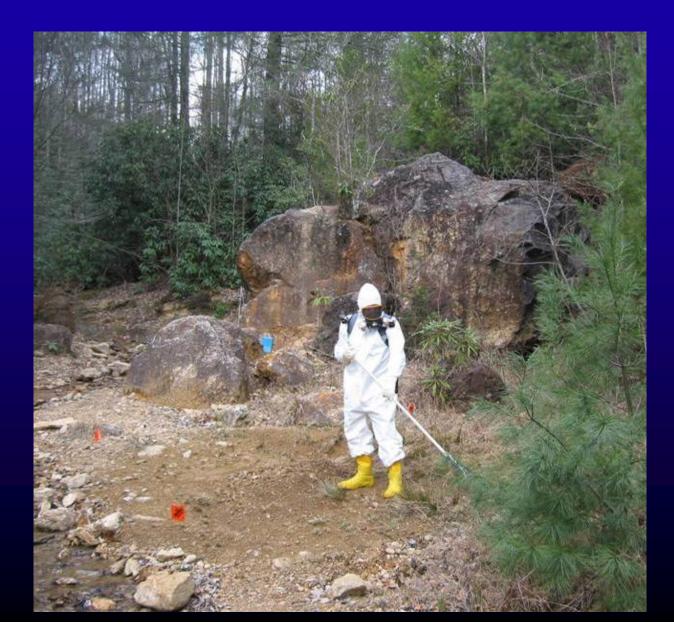
Motorcycling on Unpaved Road/Trail

Driving on Unpaved Road/Trail

Rototilling

Gardening

Child in Dirt with Bucket


Mowing

Digging

Weed whacking

Activity-Based Indoor Sampling

- Activity-based sampling, if possible
- Generic use of fans/leaf blower may be used
- Collect air samples (breathing zone) and perimeter air samples
- Provides quantitative concentration of fibers in air resulting from dust disturbance

Alternative Indoor Sampling: Microvacuum

- ASTM 5755 method
- Low-suction vacuum
- Captures dust and fibers on filter cassette
- Preserves dust matrix

Provides a
 qualitative measure
 of fibers in settled
 dust

Asbestos

Definitions Types Shapes Examples

Asbestos: What is It?

Asbestos may be defined

- Commercially
 - Materials used for industrial activities
- Regulatory
 - Materials regulated by agencies and organizations
- Geologically
 - Mineralogically mineral type
 - Morphologically size, habit
- Analytically

What is seen under microscope

Asbestos: Commercial Definition

 Naturally occurring mineral fibers

Selected for useful properties

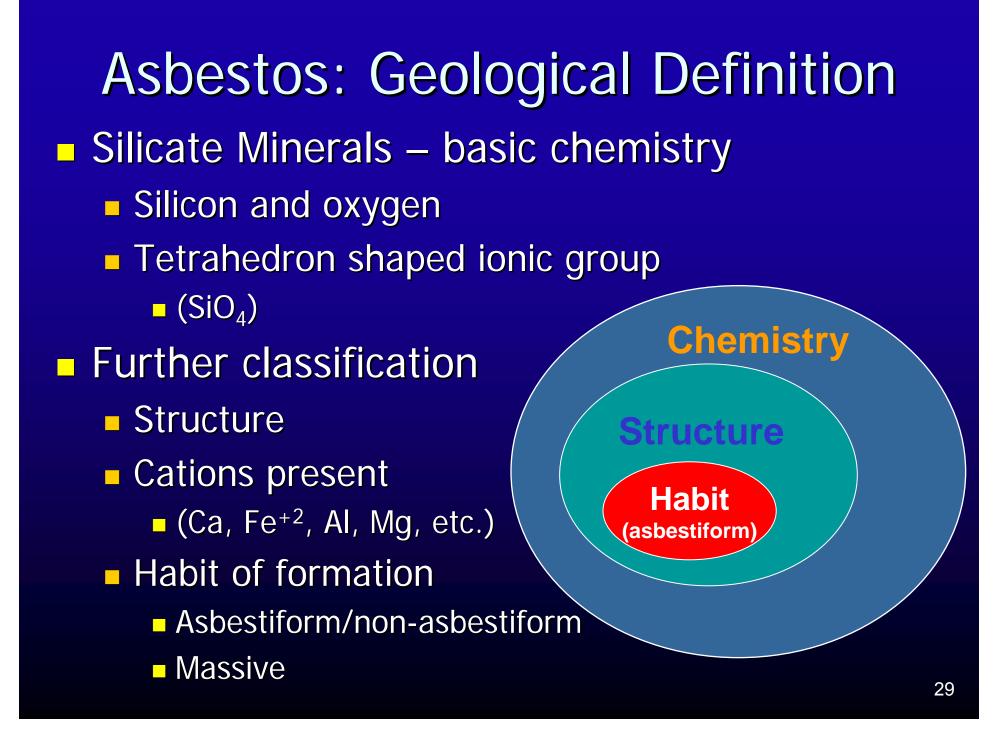
- Long flexible mineral fibers
- High tensile strength
- Durability
- Heat resistance
- Acid/alkaline resistance (amphiboles)
- The general term asbestos was applied to mineral fibers selected for these uses

Asbestos: Regulatory Definition

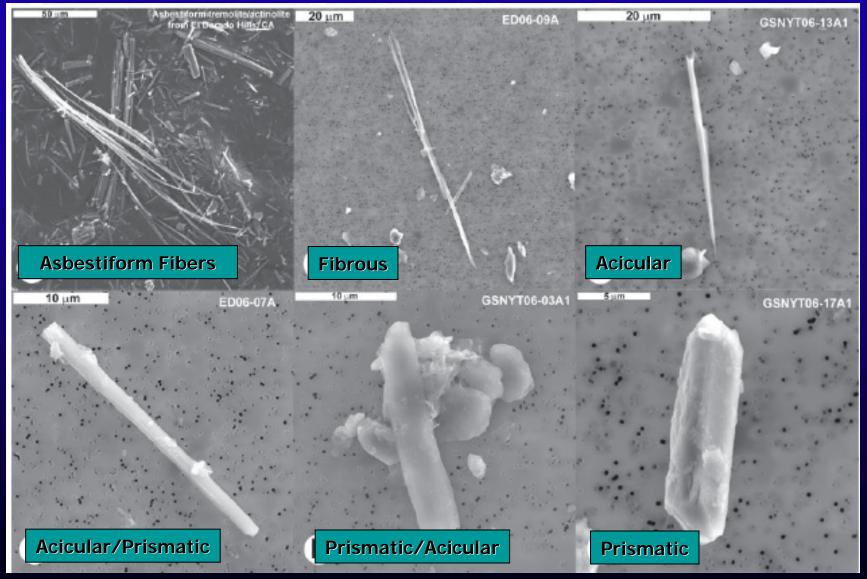
 Occupational Safety and Health Administration (29 CFR 1910.1001)

- Chrysotile
- Amosite
- Crocidolite

- Anthophyllite
- Actinolite
- Tremolite
- U.S. Environmental Protection Agency
 - CERCLA/RCRA
 - Toxic Substances Control Act
 - Clean Air Act
 - NESHAPs

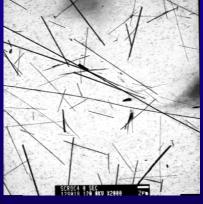


Asbestos: Mineralogical Definition


American Chemical Society

CAS No. 1332-21-4

 "A grayish, noncombustible fibrous material. It consists primarily of impure magnesium silicate minerals."



Morphology - Structures

Asbestos: Analytical Definition

- Historical exposure measurements
 - Total mineral dust (mg/m³)
 - Early filter collection membrane filter (f/m³)
- "Fiber" metric used to establish the EPA IRIS Inhalation Unit Risk
 - Phased contrast microscopy (PCM)
 - Surrogate measure of material present
- "Fiber" defined by resolution instrument and counting rules applied
 - e.g., Transmission electron microscope (TEM)
- Different agencies and organizations have different counting rules

What is the appropriate definition for risk assessment?

Which materials are toxic?

- All fibrous silicates?
- Only fibers with a certain crystal form? (Inosilicates?)
- Cleavage fragments versus asbestiform versus non-asbestiform

What attributes of the materials are critical to its toxicity?

- Dimensional characteristics
 - Length, width, aspect ratio
- Chemistry surface activity
- Structure and habit of formation

What metric should be used?

- Fiber count
- Surface area
- Mass

Asbestos: Framework Definition

Asbestos: The generic name used for a group of naturally occurring mineral silicate fibers of the serpentine and amphibole series, displaying similar physical characteristics although differing in composition.

Sampling Recommendations

Solid Media (soil/dust)


Air

Solid Media Sampling

- Polarized light microscopy (PLM), an optical form, is a useful screening tool if large quantities of asbestos are present
- Non-detects with PLM do NOT mean there is no asbestos present – levels may be too low to been seen by PLM
- PLM not useful for soils below 0.2 to 0.25%

Air Sampling

- Is needed for meaningful human exposure assessment
- Should be done in the breathing zone if it's to be used for risk evaluation
- ABS Activity- based sampling should be done while performing an activity typical for the site (e.g., raking, jogging, gardening)
 - [RME principle → take air samples during dust-generating activities (passive air samples may not reflect potential exposure)]
- Measure and characterize all fiber sizes (dimension) and fiber types (mineralogy)

Fibers Entrained in Carpet

Fibers in Breathing Zone

Fibers on Desk

Fibers Entrained in Carpet

Exposure Assessment Summary

- Measurements <u>made directly from the</u> <u>breathing zone</u> are most valuable
- Measurements from stationary monitors <u>do not</u> provide reliable estimates of human inhalation exposure
- Dust measurements and/or solid media (soil, ore, etc.) measurements are <u>extremely difficult</u> to convert to estimation of risk

Exposure Assessment Summary

Key points:

- 1.) Measurements from stationary air monitors may not provide reliable estimates of human inhalation exposure
 - Challenge: To efficiently obtain snapshot sample to predict long-term exposure
- Difficulty in converting <u>dust</u> measurements and/or <u>solid media</u> (soil, ore, ACM, etc.) data to estimation of risk
 - Challenge: To understand the factors that influence re-entrainment of fibers from solid matrices

Analytical Recommendations

Sample analysis issues
Analysis of air samples
Analysis of dust samples
Definition of PCMe fiber

Sample Analysis Issues

- Air analysis (stationary)
 - 2 alternatives
 - Phased Contrast Microscopy (PCM)
 - Transmission Electron Microscopy (TEM)
 - Expressed as fibers per volume of air (f/cc)
- Settled dust analysis
 - Transmission Electron Microscopy (TEM)
 - Expressed as fibers per unit area (f/cm²)
- Bulk material analysis (soil etc.)
 - More complicated
 - Percent weight
 - Visual area estimates; point counting; gravimetric surrogate (Polarized Light Microscopy PLM)
 - Analytical sensitivity for asbestos in soil

How do these relate to exposure to air in breathing zone? 42

Analysis of Air Samples

Instrumentation

- Conventionally by PCM (400 x)
- TEM (up to 40,000 x)
- Counting Rules
 - AHERA, ISO, & Superfund have different counting rules
 - Depending on the purpose, you may count more or fewer fibers
 - Risk assessment (PCME)
 - Cleaning efficiency (AHERA)

Analysis of Dust Samples

TEM – PCMe analysis (asbestos fibers >5 µm)
 TEM – AHERA analysis (asbestos fibers >0.5 µm)
 No regulatory standards for interpreting results

- No standards for interpreting results from settled dust (mass percent or fiber load) from vacuum or wipe
- Indirect prep may alter fiber number/dimension
- Minimum sensitivity ~250 f/cm² (wipe and microvacuum methods)
- Matrix interference \rightarrow higher detection limits

Definition of PCMe Fiber

- EPA recommends modification of the [ISO Method] aspect ratio to 3:1 for this counting scheme.
- The other counting scheme allows for the counting of PCM equivalent fibers, or PCMe.
 - fibers that are longer than 5 μm in length
 - aspect ratios of 3:1 or greater.
 - PCMe fibers and structures under the ISO method also have a defined width range of between 0.2 µm and 3.0 µm. Note that EPA recommends a width range between 0.25 µm and 3.00 µm, as recommended by World Health Organization [WHO, 1986].)

The purpose of counting fibers as PCMe fibers is that the method is attempting to mimic the size fraction of fibers that would be detected if the sample were being run under PCM. EPA's IRIS toxicity values for asbestos were historically generated from data based on PCM analyses.

TRW Asbestos Committee

- Develops new guidance for site assessment at hazardous waste sites contaminated by asbestos
- Provides site consultation in support of Regional requests for technical assistance
 - The committee is available to provide sitespecific support to application of the framework

 Identifies research needs-data gaps in asbestos site assessment and risk assessment

Background – Cleanup versus Risk-based –

- 1% in soil historically used as clean-up level – NOT risk-based
- August 2004 Cook memo rescinded 1%
 - Regions should develop <u>risk-based</u>, sitespecific action levels based on air concentrations
 - "an accurate exposure value could only be determined through site sampling techniques that generate [airborne] fibers from soil"

Why Doesn't 1% Work?

Asbestos NOT uniformly distributed in soil

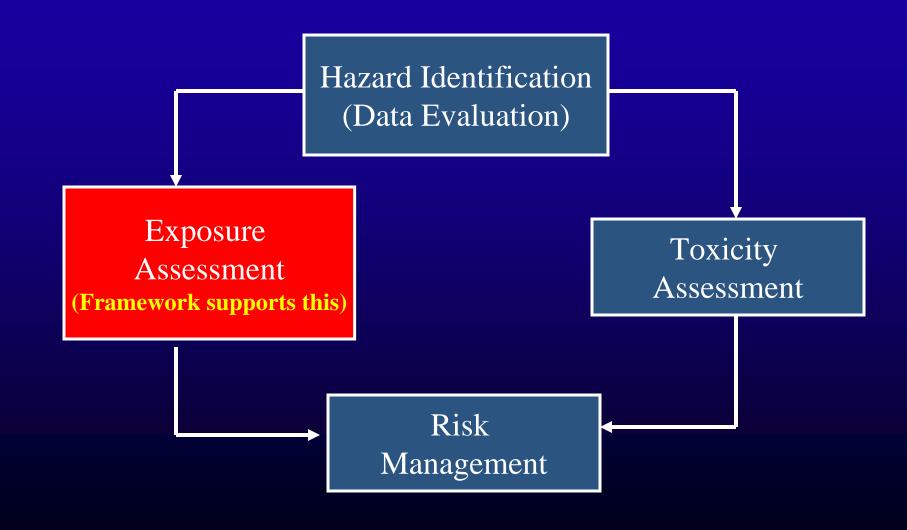
- 2 aliquots of same soil sample can yield vastly different asbestos concentrations (ND to > 1%)
- Risk assessment CANNOT predict inhalation exposure & risk from soil concentration using 1% because
 - soils w/ asbestos levels below 1% can create high risk inhalation exposures when disturbed
 - "1 percent threshold for asbestos in soil/debris . . . may not be protective of human health in all instances"

Key Recommendations: The Framework

Is risk-based investigation of exposure
Is applicable to removal and remedial sites
Addresses outdoor and indoor exposures
Uses the latest sampling analytical methodologies
Allows users to take response action at

any point in the process

Asbestos Risk – More Information


Risk assessment process
Hazard ID
Toxicity assessment

Lifetime risk estimates

Unit risks

Agency activities

Risk Assessment Process

Hazard Identification

Which materials are toxic?

- All fibrous silicates?
- Only fibers with a certain crystal form? (Inosilicates?)
- Cleavage fragments versus asbestiform

What attributes of the materials are critical to its toxicity?

- Dimensional characteristics
 - Length, width, aspect ratio
- Chemistry surface activity
- Structure and habit of formation

What metric should be used?

- Fiber count
- Surface area
- Mass

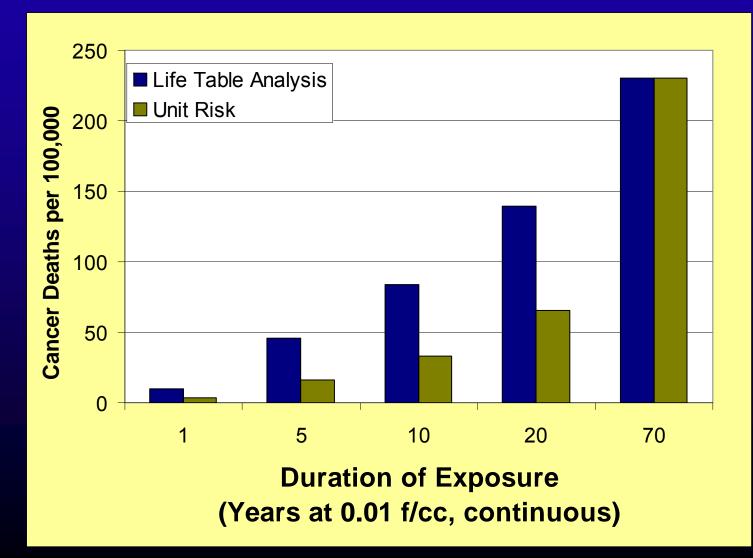
Toxicity Assessment

No Reference Concentration to address non-cancer health effects

IRIS Inhalation Unit Risk

Addresses lung cancer and mesothelioma

PCM fiber as surrogate for exposure


Based on commercial grade asbestos

Chrysotile (6), Amosite (1) Mixed (4)

- Less-than-lifetime exposures
 - Early-life exposures

 Lifetime risk of cancer may be underestimated by unit risk

Lifetime risk estimates from less-than-lifetime exposures

Risk Assessment Calculations

- USEPA Risk Assessment Guidance for Superfund
 - Primary guidance for evaluating exposure to hazardous substances, including asbestos
 - Use default parameters, or site-specific parameters when available, for receptor populations
 - Parameters include exposure frequency and exposure duration
 - Combined with inhalation reference value to determine potential risk
 - Rearrange formula to derive cleanup goals

Developing Risk-based Criteria

- Screening values, risk estimates, and preliminary remediation goals developed from the inhalation unit risk (IRIS)
- Uncertainty analysis can be used to provide bounding estimates in certain situations:
 - Less than lifetime exposures
 - Exposure to predominately amphibole fibers

Risk Assessment Formulas Estimating Asbestos Risk Risk = (Ca x ET x ED x EF x IUR)/(AT)

Activity	Risk	Ca	ET	EF	ED	IUR	AT
Lifetime	1E -04	0.00043	1	365	70	0.23	25550
Residential Indoor	1E -04	0.001	1	365	30	0.23	25550
Gardening	1E -04	0.018	0.417	50	30	0.23	25550
Jogging	1E -04	0.053	0.083	250	10	0.23	25550

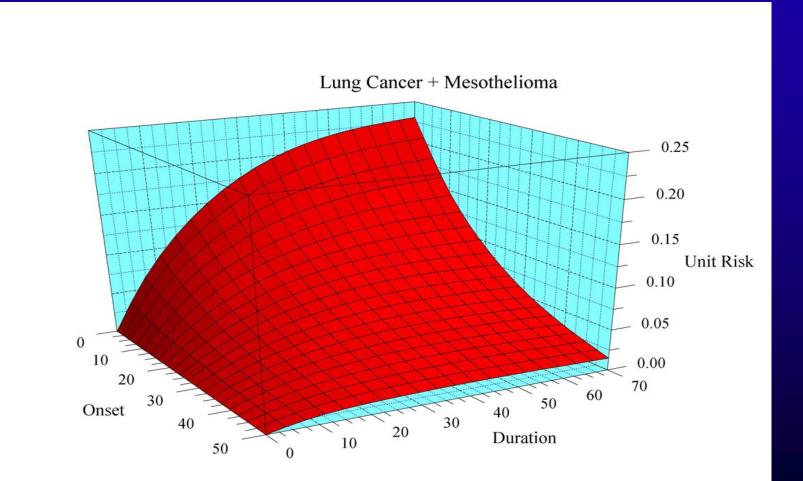
- Ca = Concentration in air (f/cc)
- ET = Exposure time (hours/day); 12 hours/day = 0.5
- EF = Exposure frequency (days)
- ED = Exposure duration (years)
- IUR = Inhalation Unit Risk 0.23 f/cc from IRIS
- AT = Average time (days); 365 of days/year x lifetime (70 years) = 25550 days

Risk Assessment Formulas Calculating Preliminary Remediation Goal CA = (Risk x AT)/(ET x ED x EF x IUR)

Activity	ET (hours/day)	EF (days)	ED (years)	AT (days)	IUR (f/cc)	Risk	Remediation Goal (f/cc)
Lifetime	1	365	70	25550	0.23	1E -04	0.00043
Residential Indoors	1	365	30	25550	0.23	1E-04	0.00101
Gardening	0.417	50	30	25550	0.23	1E -04	0.018
Jogging	0.083	250	10	25550	0.23	1E-04	0.053

Unit Risk Factors (Life Table)

Based on Table 6-3 from USEPA 1986


Age at Onset	Duration of Exposure (years)											
(years)	1	5	10	20	LT							
0	0.010	0.046	0.084	0.140	0.23							
10	0.007	0.031	0.058	0.094	0.148							
20	0.005	0.021	0.038	0.063	0.093							
30	0.003	0.014	0.025	0.042	0.056							
50	0.001	0.006	0.010	0.014	0.015							

Less than Lifetime Exposures CA = (Risk x AT)/(ET x ED x EF x IUR)

Activity	ET (hours/ day)	EF (days)	ED (years)	AT (days)	IUR (f/cc)	Risk	Remediation Goal (f/cc)
Jogging Lifetime	0.083	250	10	25550	0.23	1E -04	0.053
Jogging Begin at 20	0.083	250	10	25550	0.038	1E-04	0.32
Jogging Begin at 30	0.083	250	10	25550	0.025	1E -04	0.49
Jogging Begin at 50	0.083	250	10	25550	0.010	1E-04	1.23

TABLE E-4 Extrapolated Unit Risk Values for Continuous and Less-Than-Lifetine Exposures (PCM f/cc)																			
						Extrap	olated Ur	it Risk Va	lues for C	Continuou	s and Le	ss-Than-L	.ifetime E	xposures	(PCM f/co)			
Age at									Exposur	e Duratior	(vears)								
Onset	1	2	3	4	5	6	8	10	12	14	16	20	24	25	30	40	50	60	LT
0	1.0E-02	2.0E-02	3.0E-02	3.9E-02	4.7E-02	5.5E-02	7.1E-02	8.5E-02	9.8E-02	1.1E-01	1.2E-01	1.4E-01	1.5E-01	1.6E-01	1.7E-01	1.9E-01	2.1E-01	2.2E-01	2.3E-01
1	9.9E-03	1.9E-02	2.8E-02	3.7E-02	4.5E-02	5.3E-02	6.8E-02	8.1E-02	9.4E-02	1.0E-01	1.2E-01	1.3E-01	1.5E-01	1.5E-01	1.7E-01	1.9E-01	2.0E-01	2.1E-01	2.2E-01
2	9.6E-03	1.9E-02	2.7E-02	3.6E-02	4.4E-02	5.1E-02	6.5E-02	7.8E-02	9.0E-02	1.0E-01	1.1E-01	1.3E-01	1.4E-01	1.5E-01	1.6E-01	1.8E-01	1.9E-01	2.0E-01	
3			2.6E-02											1.4E-01		1.7E-01			2.0E-01
4			2.5E-02												1.5E-01		1.8E-01	1.8E-01	1.9E-01
5			2.4E-02 2.3E-02													1.6E-01	1.7E-01	1.7E-01	1.9E-01
0 7		-	2.3E-02 2.3E-02		_	-									1.3E-01		1.6E-01		1.8E-01
8			2.3E-02																1.7E-01
9			2.1E-02																
10	7.0E-03	1.4E-02	2.0E-02	2.6E-02	3.2E-02	3.8E-02	4.8E-02	5.7E-02	6.6E-02	7.3E-02	8.0E-02	9.2E-02	1.0E-01	1.0E-01	1.1E-01	1.3E-01	1.4E-01	1.4E-01	1.5E-01
11	6.8E-03	1.3E-02	1.9E-02	2.5E-02	3.1E-02	3.6E-02	4.6E-02	5.5E-02	6.3E-02	7.1E-02	7.7E-02	8.9E-02	9.8E-02	1.0E-01	1.1E-01	1.2E-01	1.3E-01	1.3E-01	1.4E-01
			1.9E-02																
			1.8E-02																
			1.7E-02																
			1.7E-02 1.6E-02																
17			1.6E-02																
18			1.5E-02																
19	-	_	1.4E-02															_	
20	4.9E-03	9.5E-03	1.4E-02	1.8E-02	2.2E-02	2.6E-02	3.3E-02	3.9E-02	4.4E-02	4.9E-02	5.4E-02	6.2E-02	6.8E-02	6.9E-02	7.5E-02	8.3E-02	8.7E-02	9.0E-02	9.3E-02
	-	-	1.3E-02		-	-	-					-	-					-	
	-	-	1.3E-02	-	-	-		-	-	-		-	-	-			-	-	
			1.2E-02																
		-	1.2E-02										_				-	_	7.7E-02
			1.2E-02																7.3E-02
		-	1.1E-02																
			1.0E-02		-	-						-	-		5.3E-02			-	
29	3.5E-03	6.9E-03	1.0E-02														-	-	
		0.02.00													4.8E-02				
															4.6E-02				
															4.4E-02				
			8.7E-03 8.3E-03																
			8.3E-03 8.0E-03																
			7.7E-03																
			7.5E-03																
38	2.6E-03	5.0E-03	7.2E-03	9.2E-03	1.1E-02	1.3E-02	1.6E-02	1.9E-02	2.1E-02	2.3E-02	2.5E-02	2.8E-02	3.0E-02	3.0E-02	3.2E-02	3.4E-02	3.5E-02	3.6E-02	3.6E-02
			6.9E-03																
			6.6E-03																
			5.4E-03																
50	1.5E-03	2.9E-03	4.1E-03	5.3E-03	6.3E-03	7.2E-03	8.7E-03	1.0E-02	1.1E-02	1.2E-02	1.3E-02	1.4E-02	1.4E-02	1.4E-02	1.5E-02	1.5E-02	1.5E-02	1.5E-02	1.6E-02

Unit Risks for Continuous Exposures: Function of Age at Onset & Exposure Duration

Agency Activities in Asbestos Risk Assessment

OSWER Risk Methodology IRIS Cancer Reassessment IRIS non-cancer assessment Implementation support for framework Training Uncertainty analysis Quality Assurance Performance evaluation samples SOPs for analysis

Technical Support Available from TRW Asbestos Committee

Co-Chairs:

- Arnold Den Region 9
- Jim Konz OSRTI
- Mark Maddaloni Region 2
- All 10 Regions
 OSWER
 ERT
 ORD
 ATSDR
 OPPTS
 OAQPS
 OECA

e-mail: asbestoshelp@epa.gov TRW Hotline: 1-866-282-8622